Learning Discriminative Affine Regions via Discriminability

نویسندگان

  • Dmytro Mishkin
  • Filip Radenovic
  • Jiri Matas
چکیده

We present an accurate method for estimation of the affine shape of local features. The method is trained in a novel way, exploiting the recently proposed HardNet triplet loss. The loss function is driven by patch descriptor differences, avoiding problems with symmetries. Moreover, such training process does not require precisely geometrically aligned patches. The affine shape is represented in a way amenable to learning by stochastic gradient descent. When plugged into a state-of-the-art wide baseline matching algorithm, the performance on standard datasets improves in both the number of challenging pairs matched and the number of inliers. Finally, AffNet with combination of Hessian detector and HardNet descriptor improves bag-of-visual-words based state of the art on Oxford5k and Paris6k by large margin, 4.5 and 4.2 mAP points respectively. The source code and trained networks are available at https://github.com/ducha-aiki/affnet

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Affine Hull Representations for Multi-Shot Person Re-Identification

We consider the person re-identification problem, assuming the availability of a sequence of images for each person, commonly referred to as video-based or multi-shot reidentification. We approach this problem from the perspective of learning discriminative distance metric functions. While existing distance metric learning methods typically employ the average feature vector as the data exemplar...

متن کامل

Learning fine-grained features via a CNN Tree for Large-scale Classification

We propose a novel approach to enhance the discriminability of Convolutional Neural Networks (CNN). The key idea is to build a tree structure that could progressively learn fine-grained features to distinguish a subset of classes, by learning features only among these classes. Such features are expected to be more discriminative, compared to features learned for all the classes. We develop a ne...

متن کامل

Discriminability objective for training descriptive captions

•ATTN models better than FC models, and discriminability objective works for both. •ATTN+CIDEr+* combination is our best choice •Moderate λ = 1 produces good tradeoff between discriminability and fluency •Higher λ make captions more discriminative to machine and to humans, but at the cost of fluency •With moderate λ, non-discriminative scores like BLEU, METEOR, CIDEr improve as well! • especial...

متن کامل

Robust Joint Discriminative Feature Learning for Visual Tracking

Because of the complementarity of multiple visual cues (features) in appearance modeling, many tracking algorithms attempt to fuse multiple features to improve the tracking performance from two aspects: increasing the representation accuracy against appearance variations and enhancing the discriminability between the tracked target and its background. Since both these two aspects simultaneously...

متن کامل

Minimum Conditional Entropy Clustering: A Discriminative Framework for Clustering

In this paper, we introduce an assumption which makes it possible to extend the learning ability of discriminative model to unsupervised setting. We propose an informationtheoretic framework as an implementation of the low-density separation assumption. The proposed framework provides a unified perspective of Maximum Margin Clustering (MMC), Discriminative k -means, Spectral Clustering and Unsu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.06704  شماره 

صفحات  -

تاریخ انتشار 2017